```
IF(ABS(P(J)) .LE. 1.0E-5) P(J)=1.0134E-6
      V(1)=VN
      Q(J) = QA
      IF(TLIMA(J).GE.TLIMB) GO TO 129
      JCRIT=J
      TLIMB=TLIMA(J)
 129 IF(P(J)+Q(J).LE.PPEAK) GO TO 131
      PPEAK = (P(J) + Q(J))
      "JPMAX" IS THE VALUE OF J FOR WHICH PPEAK TAKES ITS MAXIMUM VALUE.
      JPMAX=J
  131 J = J + 1
      J1=J+1
      JT=J1+1
      "JSTAR" IS A VALUE OF J AHEAD OF THE WAVE FRONT AT WHICH COMPUTING
C
      STOPS PREPARATORY TO ADVANCING TIME BY ANOTHER INCREMENT. JSTAR
C
      IS ADVANCED BY UNITY WHENEVER PARTICLE VELOCITY, U(JSTAR),
      BECOMES NON-NEGLIGIBLE.
      IF(J.LE.JSTAR+1) GO TO 70
C----TEST TO ADVANCE JSTAR
      IF(ABS(U(JSTAR+1)).GT.1.0E-5) JSTAR=JSTAR+1
      IF((CYCLE.EQ.CYCLES).OR.(TIMES.GE.TQUIT).OR.(J.EQ.JQUIT))GO TO 169
      IF(CYCLE.GT.10)COUNTS=20
      TO CHANGE FREQUENCY OF PRINT-OUT. A STATEMENT CAN BE INSERTED
C
      HERE: "IF (CYCLE.GT. K) COUNTS=MN" WHERE "K" AND "MN" ARE
1
      INTEGERS TO BE CHOSEN BY THE PROGRAMMER.
      IF(MOD(CYCLE, COUNTS). NE.O) GO TO 180
      GO TO 170
  169 LAST=1
  170 JPB=1
      JPE=JSTAR+2
      CALL WRITE
  180 DTNH1=0.6*TLIMB
      IF(DTNH1/DELT.GT.1.1) DTNH1=1.1*DELT
      [F(DTNH1.GT.DTMX) DTNH1=DTMX
      DTN=DELT
      DELT=DTNH1
      DELTI = DTN+DELT
      GO TO 40
C
  951 FORMAT(1H1,6X,3HALP,9X,4HDELT,11X,4HDTMX,11X,4HCONA,12X,2HCQ/7X,I1
     -, 4F15.61
  957 FORMAT(1H0,8X,2HS1,5X,8HBURN()../8X,12,9X,9I5/2X)
  961 FORMAT(1H0,5X,3HTAU,16X,5HLEFTP,14X,4HU(1),15X,6HOPT(ON/3E19.8,18)
      FND
      SUBROUTINE DECIDE
C
      COMMON /CIZON/ H(9), BURN(9), L(9), DX(9), S1, RHO(9)
      COMMON /C2TIME/ TIMES, CYCLE, DELT, DTN, DTMX, TLIMA(300), JCRIT,
        TQUIT, TAU
      COMMON /C3CTRL/ COUNTS, JSTAR, JPE, JPB, JQUIT, LAST, CYCLES
      COMMON /C4FLOW/ U(300), V(300), X(300), Q(300), P(300), E(300), QA, VN,
     1 MASS(300), CSP(300)
      COMMON /C7GNRL/ ALP, OPTION, CONA, CQ. LEFTP
      DIMENSION ZON(9)
C
```

DUVALL PAGE 4

```
INTEGER H, BURN, S, S1, ZON, CYCLE, COUNTS, CYCLES, ALP, OPTION, H2, HS1, HS,
     1 BURNS, HS2
     REAL L, MASS, LINEAR, LEFTP
C
C
      CHOOSE GEOMETRY. ALP IS AN INTEGER LABEL WHICH IS TO BE SET
C
      ACCORDING TO THE GEOMETRY OF THE PROBLEM.
C
      X IS THE EULERIAN SPACE COORDINATE. THE INITIAL VALUE AT T=0
C
      OF THE LEFT BOUNDARY OF CELL 1 IS SET HERE. THE POSITIONS OF
C
     OTHER CELL BOUNDARIES ARE CALCULATED IN MAIN FROM THE NUMBER OF
C
      ZONES AND THE DIMENSIONS OF THE PROBLEM.
C
      FOR CYLINDRICAL AND SPHERICAL PROBLEMS, LEFT BOUNDARY IS
C
      INTERPRETED AS INNER BOUNDARY.
          ALP = 1 FOR PLANE GEOMETRY
C
         ALP = 2 FOR CYLENDRICAL GEOMETRY
C
          ALP = 3 FOR SPHERICAL GEOMETRY
      ALP=1
C----CHOOSE COORDINATES OF FIRST CELL
      X(1)=0.0
C----NUMBER OF REGIONS PLUS ONE (NOT TO EXCEED 9)
      THIS PROGRAM CAN BE RUN WITH SEVERAL REGIONS OF DIFFERENT
C
      MATERIALS. THE NUMBER OF SUCH REGIONS IS DENOTED BY AN INTEGER
C
      S1-1. THIS PECULIAR CONVENTION ARISES BECAUSE OF A CHARACTERISTIC
C
C
      OF FORTRAN--ZERO INDICES ARE NOT ALLOWED. EACH DISTINCT REGION IS
C
      DENOTED BY AN INTEGER LABEL S. S=2 IS THE LEFT-MOST REGION, S=3
      THE NEXT TO THE RIGHT, ETC. UP TO SI.
C
      EACH REGION IS DIVIDED INTO A NUMBER OF SPACE ZONES OR CELLS,
C
      ZON(S). THE NUMBER OF CELLS UP TO AND INCLUDING REGION S
C
      (STARTING WITH THE LEFTMOST REGION) IS H(S)=SUM(ZON(K)),
C
C
      K=2 TO S. INCLUSIVE.
      S1=2
     -MATERIAL IN REGIONS
C
      "BURN(S)" IS AN INTEGER LABEL WHICH DEFINES THE MATERIAL OF
      REGION S.
C
C
          BURN(S) = 1 FOR EXPLOSIVE
C
          BURN(S) = 2 FOR VOID
          BURN(S) = 3 FOR LIQUID
C
          BURN(S) = 4 FOR SOLID
          BURN(S) = 5 FOR PHASE TRANSITION
C
      BURN(2)=5
     -SET OPTION
      "OPTION" IS AN INTEGER LABEL WHICH DESCRIBES THE TYPE OF PROBLEM
C
      TO BE SOLVED. IF OPTION=1,2, OR 3, THE PROBLEM IS ONE IN WHICH
C
      A SPECIFIED PRESSURE IS APPLIED TO THE LEFT HAND BOUNDARY. IF
C
      OPTION=5, AN EXPLOSIVE REGION IS INCLUDED AND ITS DETONATION
C
      PROVIDES THE DRIVING FORCE. OPTION=6 MEANS THAT THE FIRST REGION
C
      (S=2) IS A FLYER PLATE WHICH HAS JUST COLLIDED WITH THE SECOND
C
      REGION (S=3) AT THE START OF THE PROBLEM. WHEN THIS HAPPENS,
C
      EACH CELL IN REGION 1 (S=2) IS GIVEN THE FLYER PLATE VELOCITY
      U(1), EXCEPT THE ONE ADJACENT TO REGION 2(S=3) THIS CELL AND THE
C
      FIRST CELL IN REGION 2 (S=3) ARE GIVEN VELOCITIES U(1)/2 FOR
C
     SMOOTHING PURPOSES. WHEN OPTION=1, THE TIME DURATION, TAU, OF
C
      THE APPLIED PRESSURE MUST BE SET. FOR A CONSTANT PRESSURE APPLIED
C
      AT T=0, SET TAU EQUAL TO A LARGE NUMBER, SAY 500 (MICROSECONDS).
C
      FOR OPTION=2, TIME TAU IS THE TIME AT WHICH THE APPLIED PRESSURE
      EQUALS ZERO IN A LINEAR RAMP. OPTION=3 HAS A BUILT-IN TIME
```